
Characteristic scales for a scalar field in turbulent flows

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 L797

(http://iopscience.iop.org/0305-4470/27/21/002)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A. Math. Gen. 27 (1994) L797-LSOO. Printed in the UK 

LETTER TO THE EDITOR 

Characteristic scales for a scalar field in turbulent flows 

E A Novikov 
Institute for Nonlinear Science, 0402 University of California, San Diego, La Iolla, CA 
92093-0402. USA 

Received 11 April 1994 

Abstract. A covariance analysis of a scalar field in 30 and ID turbulent Bows is performed 
on the basis of the convectivediffusion equation. Physically distinguished scales for coherent 
stiumures in the inertialconvective range are obtained. 

The dynamics and statistics of turbulent flows are better understood in terms of local 
characteristics [I], which have intemal mechanisms of amplification. For 3D turbulence, 
the local characteristic of motion is the vorticity field and self-amplification is due to the 
stretching of vortex filaments [2, 31. For ?D turbulence, the local characteristic is the vorticity 
gradient [47]. A covariance analysis of 3D vorticity, based on the NavierStokes equations, 
leads to a scale which was associated with ‘vortex strings’ [SI: I ,  = L where L is 
an external scale and Re is the Reynolds number. Similar analysis for 2D vorticity gradients 
gives a scale for coherent vortex structures [9]:  1, = LRe-’I4. 

In this letter, we extend the analysis of [8,91 to the case of a passive scalar field e(t, I) 
in 3D and 2D turbulent flows. The convection-diffusion equation for incompressible fluid 
has the form 

ae ae a u k  - + vkek = XAe + q 
a t  axk axa 

e, E -- = 0, 

Here U k ( t , Z )  is the velocity field, summation over the repeated indices is from 1 to the 
dimension of the flow s = 2,3.  x is the diffusivity and q is a statistically stationary source. 
From (I) ,  we get statistical balance of 8-fluctuations for homogeneous turbulence 

(2) 

Here ( ) means statistical averaging, all fields are taken at the same spacetime location 
and N is the mean diffusion rate of 8-fluctuations. For a statistically stationary state, the 
left-hand side (LHS) of balance (2) is zero. 

i a  --(eZ) = - ~ + ( q e )  ~ = x ( e : ) .  
2 at 

Similarly, spatial differentiation of (1) gives a statistical balance of Bi 

(3) 

The second term in the LHS of (3) represents the effect of convective amplication of 8i, 
namely compression of the fluid element in the direction of 0,. 
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In order to evaluate the contribution of external source q in balance (3) and for the 
following analysis, we assume that q is Gaussian and &correlated in time. This gives us 
the formula [&lo] (see also 1111 and appendix B in [12]) 

Here, R is any functional of 8, Q is the spatial part of the covariance of 4. 6 corresponds 
to the functional derivative and all fields are taken at the same the.  From (4) 

(48') = ;e(?) Q(0) = 2N. (5) 

Here and below, a prime indicates the field taken at the point 2' = x + T and we obtain 
the second equality (5) from balance (2) for the stationary state. From (9, we have 

(qie,) = - ; A Q ( ~ ) L ~  = S L - ~ N  (6) 

Here, we have assumed isotropy and L is the natural external scale, defined by the source 
[IO]. In what follows, we assume, for simplicity, that L is of the same order as the scale 
at which energy is supplied in 3D turbulence (or enstrophy in 2D turbulence). 

Contxibutions of external source (6) relative to the diffusion term in (3) gives the small 
parameter 

where ld is the characteristic internal scale of turbulent diffusion. For 3D turbulence with 

where 1, is the Kolmogorov internal scale, v is the kinematic viscosity and E is the mean 
rate of energy dissipation. Formula (8) gives 

Prandtl number Pr = v J x  of order less than one, we have [ l l ,  121 Id - I ,  = v 3/4e-l/4 

(9) 0 - Re =~L4/3el/3~-1 

where Re is the Reynolds number. For Pr z 1, parameter U is even smaller than the 
expression in (9). Thus, for large Re, the contribution of the external source in balance (3) 
is negligible and for the stationary state, diffusion is balanced with convective amplification. 
The same is true for 2D turbulence in the regime of enstrophy cascade [13-151. In this case, 
for Pr - 1, we have 

Id - LRe-'" U - Re-' Re = L'y'pv-' (10) 

where y is the mean rate of enstrophy dissipation-the main parameter in this repime. 
Similar consideration, with the use of (4), shows that the one-point balance of high-order 
moments of 0, is also unaffected by the external source when Re >> 1 (cf vorticity analysis 
in [SI). 
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Now we turn to the two-point covariance analysis of the 0-field. Standard procedure 
[8,11,12] gives, for homogeneous isotropic turbulent flow, 

(11) 
a a -(e@’) + -((U; - vk)es’) = ZxA(00’) + Q(r)  
at ark 

where we have used (5). By spatial differentiation of (1 I), we get 

(12) 

For a stationary state, the first term in the LHs of (12) is zero. The second term represents 
the effect of convective amplification of the Bi-covariance. The terms in the RHS of (12) 
correspond to the effects of molecular diffusion and external source. 

Assuming that Q ( r )  is characterized by only one external scale L ,  we get from (S), for 
r << L, 

a a 
-(0i0,’) - A-(@; - uk)ee‘) = ZxA(0iO:) - A Q ( r ) .  
at . ark 

A Q ( r )  zz -2rL-’N. (13) 

max(~., l x ]  < r < L (lx = ,y3I4~-‘l4). (14) 

Consider an inertial-convective range of scales for 3D turbulence 

In this range, neglecting the small intermittency correction, we have 11 1,121 

(ee‘) = c ~ N E - ~ / ~ ~ ~ ~ ~  (15) 

where CO is constant of order one. Thus, having in mind definition (1) of e,, we get 

Comparison of the two terms in the RHS of balance (12) shows that when we approach 
the lower boundary of range (14), the effect of the source becomes negligible for large Re. 
This corresponds to the one-point balance, considered above. However, these two terms 
(effects of diffusion and external source) become comparable and compensate each other at 
the scale 

which, for most of the practical interesting cases, is within the inertial-convective range 

The mere existence of such an intermediate scale suggests that the classical theories of 
cascade processes in turbulence (and in other dissipative systems with slTong interaction) 
have to be revised. The revision may incorporate coherent structures into the statistical 
description of turbulence. In particular, the dynamics of boundaries for coherent &blobs 
is determined by the above-indicated effect of convective sharpening of the &gradients 
(ei), balanced by the diffusion. Starting from scale (17), the external sources directly 
affect the dynamics of @-correlations and, thus, affect the coherent structures. Receding 
analysis shows that, for scales larger than le, the diffusion is not important and the effect 

(14). 
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of convection reverses its sign-it reduces &correlations. It seems that 10 is a natural 
physically distinguished scale for coherent 8-structures. For more subtle coherent structures, 
connected with higher derivatives of the &field, the effect of diffusion is stronger and the 
influence of external sources is shifted to larger scales (see below). 

For 2D turbulence in the regime of enstrophy cascade, similar consideration gives (using 
dimensional argument and neglecting possible logarithmic correction) 

Here RE is defined as in (IO) and the superscript indicates dimension. 
Similarly, the two-point balance for (m + 1)-order spatial derivatives of the &field, 

obtained by differentiation of (12), gives a hierarchy of increasing scales for 3D turbulence 

l.&) - L(PrRe)-3r"o+6m) le(0) = 10 m = 0,1,2, .  . . . (19) 

The corresponding hierarchy for 2D turbulence is 

&m) - L(PrRe)-'1'2"")' p ( 0 )  = I s  m = 0 , 1 , 2  ,.... (20) 

These scales differ from the scales for high-order spatial derivatives of vorticity fields [9] 
by substitution of PrRe instead of Re. Interpretation of these scales in terms of statistical 
description of the net of coherent structures can be a subject of a separate study. 

We hope that the presented results will stimulate more detailed experimental and 
numerical studies of coherent structures in turbulent flows. The necessary numerical 
simulations of turbulence with sufficiently high Re and substantial inertial range will soon 
be accessible, especially for ZD turbulence. The scalar field is relatively easy to measure 
(compared to, say, vorticity) by non-intrusive optical methods. 

This work is supported by the US Department of Energy under Grant No DE-FG03- 
91ER14188 with Dr Oscar P Manley & programme manager and by the Office of Naval 
Research under Grants No ONR-N00014-92-J-1610 and ONR-14-94-1-0040 with Dr Fdwin 
P Rood as programme manager. 
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